Suchfunktion

Formeln \(\LaTeX\) Displaystyle

ACHTUNG: Wird produktiv derzeit so nicht verwendet!

Formeln LaTeX Displaystyle

ACHTUNG: Wird produktiv derzeit so nicht verwendet, kein "Test-Case"

Formeln im LaTeX-Displaystyle werden mit $$ .. $$ eingeschlossen

-> Erkenntnis aus Ticket 141: Erzeugt ein div innerhalb eines p-tags -> unzulässig

3.2.3 (6) $$E_{\mathrm{\scriptscriptstyle Lage}}= m \cdot g \cdot h$$

3.2.3 (7) $$P=\frac{\displaystyle\Delta E} {\displaystyle\Delta t^{\vphantom{x}}}$$

3.2.5 (8) $$P=U \cdot I$$

3.2.6 (4) $$v=\frac{\displaystyle \Delta s} {\displaystyle \Delta t^{\vphantom{x}}}$$

3.2.7 (6) $$F_{\mathrm{\scriptscriptstyle G}}= m \cdot g$$

3.3.2 (2) $$R=\frac{\displaystyle U}{\displaystyle I}$$

3.3.2 (4) $$R_{\mathrm{\scriptscriptstyle ges}}= R_{{\scriptscriptstyle 1}} + R_{{\scriptscriptstyle 2}}$$, $$\frac{\displaystyle 1}{\displaystyle R_{\mathrm{\scriptscriptstyle ges}}}= \frac{\displaystyle 1}{\displaystyle R_{{\scriptscriptstyle 1}}} + \frac{\displaystyle 1}{\displaystyle R_{{\scriptscriptstyle 2}}}$$

3.3.3 (3) $$\Delta E= c \cdot m \cdot \Delta T$$

3.3.5.1 (1) $$v=\frac{\displaystyle \Delta s} {\displaystyle \Delta t^{\vphantom{x}}}$$ \qquad\qquad $$a=\frac{\displaystyle \Delta v} {\displaystyle \Delta t^{\vphantom{x}}}$$

3.3.5.1 (2) $$s(t)=v \cdot t, v=\mathrm{konstant}$$

3.3.5.1 (2) $$s(t)=\frac{1}{2}\cdot a \cdot t^2, v(t)=a\cdot t, a=\mathrm{konstant}$$

3.3.5.1 (6) $$v=\frac{\displaystyle 2\cdot \pi \cdot r} {\displaystyle T}$$

3.3.5.2 (2) $$F=m \cdot a$$ \qquad $$F=\frac{\displaystyle \Delta p} {\displaystyle \Delta t^{\vphantom{x}}}$$ \qquad $$p=m \cdot v$$

3.3.5.2 (5) $$F_{\scriptscriptstyle Z}= \frac{\displaystyle m\cdot v^{2}} {\displaystyle r}$$

3.3.5.3 (2) $$\Delta E = F_{\mathrm{\scriptscriptstyle s}}\cdot \Delta s$$ \quad falls \quad $$F_{\mathrm{\scriptscriptstyle s}}= \mathrm{konstant}$$

3.3.5.3 (3) $$E_{\mathrm{\scriptscriptstyle kin}}= \frac{1}{2}\cdot m \cdot v^{2}$$, $$E_{\mathrm{\scriptscriptstyle Lage}}= m\cdot g \cdot h$$, $$E_{\mathrm{\scriptscriptstyle Spann}}= \frac{1}{2}\cdot D \cdot s^{2}$$

3.3.5.3 (5) $\vec{p}=m \cdot \vec{v}$$

3.4.2.1 (2) $$\vec{E}= \frac{\displaystyle \vec{F}_{\scriptscriptstyle el}} {\displaystyle q}$$

3.4.2.1 (3) $$\vec{B}$$,

$$F=B\cdot I \cdot s$$

3.4.2.1 (4)  $$C= \frac{\displaystyle Q} {\displaystyle U}$$,

$$E= \frac{\displaystyle U} {\displaystyle d}$$,

$$C=\epsilon_{\scriptscriptstyle 0} \cdot \epsilon_{\scriptscriptstyle \mathrm{r}} \cdot \frac{\displaystyle A} {\displaystyle d}$$,

$$E_{\mathrm{\scriptscriptstyle Kond}}= \frac{1}{2}\cdot C \cdot U^{2}$$

3.4.2.1 (5) $$B=\mu_{\scriptscriptstyle 0} \cdot \mu_{\scriptscriptstyle \mathrm{r}} \cdot \frac{\displaystyle n} {\displaystyle l}\cdot I$$, $$E_{\mathrm{\scriptscriptstyle Spule}}= \frac{1}{2}\cdot L \cdot I^{2}$$

3.4.2.2 (2) $$U_{\scriptscriptstyle \mathrm{ind}} = - n \cdot \dot{\Phi}$$

3.4.2.2 (3) $$U_{\scriptscriptstyle \mathrm{ind}} = - L \cdot \dot{I}$$

3.4.3 (2) $$s(t) = \hat{s} \cdot \sin{(\omega\cdot t)}$$, $$s(t) = \hat{s} \cdot \cos{(\omega\cdot t)}$$,\\[2eX] $$~$$ $$v(t) = \dot{s}(t)$$, $$a(t)= \dot{v}(t)=\ddot{s}(t)$$

3.4.4 (1) $$c=\lambda \cdot f$$

3.4.6 (5) $$E_{\mathrm{\scriptscriptstyle kin,max}}= h\cdot f - E_{\mathrm{\scriptscriptstyle A}}$$

3.4.6 (6) $$E_{\mathrm{\scriptscriptstyle Quant}}= h\cdot f$$,

$$p=\frac{\displaystyle h}{\displaystyle \lambda}$$

3.6.2.1 (3) $$\vec{E}= \frac{\displaystyle \vec{F}_{\scriptscriptstyle el}} {\displaystyle q}$$

3.6.2.1 (4) $$E= \frac{\displaystyle U} {\displaystyle d}$$

3.6.2.1 (5) $$C= \frac{\displaystyle Q} {\displaystyle U}$$

3.6.2.1 (6) $$C= \epsilon_{\scriptscriptstyle 0} \cdot \epsilon_{\scriptscriptstyle \mathrm{r}} \cdot \frac{\displaystyle A} {\displaystyle d}$$,

$$E_{\mathrm{\scriptscriptstyle Kond}}= \frac{1}{2}\cdot C \cdot U^{2}$$

3.6.2.2 (2) $$\vec{B}$$, $$F=B\cdot I \cdot s$$

3.6.2.2 (3) $$F_{\scriptscriptstyle \mathrm{L}} = q \cdot v \cdot B$$

3.6.2.3 (2) $$U_{\scriptscriptstyle \mathrm{ind}} = - n \cdot \dot{\Phi}$$

3.6.2.3 (4) $$U_{\scriptscriptstyle \mathrm{ind}} = - L \cdot \dot{I}$$

3.6.2.3 (5) $$L=\mu_{\scriptscriptstyle 0} \cdot \mu_{\scriptscriptstyle \mathrm{r}} \cdot n^{2} \cdot \frac{\displaystyle A} {\displaystyle l}$$,

$$E_{\mathrm{\scriptscriptstyle Spule}}= \frac{1}{2}\cdot L \cdot I^{2}$$

3.6.3 (2) $$s(t) = \hat{s} \cdot \sin{(\omega\cdot t)}$$, $$s(t) = \hat{s} \cdot \cos{(\omega\cdot t)}$$,

$$v(t) = \dot{s}(t)$$,

$$a(t)= \dot{v}(t)=\ddot{s}(t)$$

3.6.3 (4) $$\ddot{s}(t)= - \frac{\displaystyle D}{\displaystyle m}\cdot s(t)$$,

$$T=2\cdot \pi \cdot \sqrt{\frac{\displaystyle m}{\displaystyle D}}$$ \\[2eX]

3.6.3 (5) $$\ddot{s}(t)= - \frac{\displaystyle g}{\displaystyle l}\cdot s(t)$$,

$$T=2\cdot \pi \cdot \sqrt{\frac{\displaystyle l}{\displaystyle g}}$$ \\[2eX]

3.6.3 (7) $$\ddot{Q}(t)= - \frac{\displaystyle 1}{\displaystyle L\cdot C^{\vphantom{x}}}\cdot Q(t)$$,

$$T=2\cdot \pi \cdot \sqrt{L\cdot C}$$ \\[2eX]

3.6.4 (1) $$c=\lambda \cdot f$$ \\[2eX] 3.6.6 (1) $$E_{\mathrm{\scriptscriptstyle kin,max}}= h\cdot f - E_{\mathrm{\scriptscriptstyle A}}$$ \\[2eX]

3.6.6 (2) $$E_{\mathrm{\scriptscriptstyle Quant}}= h\cdot f$$,

$$p=\frac{\displaystyle h}{\displaystyle \lambda}$$ \\[2eX]

3.6.6 (7) $$\Delta x \cdot \Delta p_{\scriptscriptstyle x} \geq h$$ \\[2eX] \end{document}


Fußleiste