Suchfunktion
Filter
Formeln in LaTeX im inline-Mode
Einbinden von Formeln inline zwischen \( \backslash ( \) und \( \backslash ) \).
Beispiel: Lorem ipsum dolor \(a^2 + b^2 = c^2 \) sit amet.
Test ob formel mit Tag umschlossen werden kann
Das ist ein \(\(v = \frac{ \Delta s }{ \Delta t }\)
3.2.3 (6) | \(E_{\mathrm{\scriptscriptstyle{ Lage }}} = m \cdot g \cdot h\) |
3.2.3 (7) | \(P = \frac{ \Delta E }{ \Delta t }\) |
3.2.5 (8) | \(P = U \cdot I\) |
3.2.6 (4) | \(v = \frac{ \Delta s }{ \Delta t }\) |
3.2.7 (6) | \(F_{\mathrm{\scriptscriptstyle{G}}} = m \cdot g\) |
3.3.2 (2) | \(R = \frac{ U }{ I }\) |
3.3.2 (4) | \(R_{\mathrm{\scriptscriptstyle{ges}}} = R_{\scriptscriptstyle{1}} + R_{\scriptscriptstyle{2}}\) |
3.3.2 (4) | \(\frac{ 1 }{ R_{\mathrm{\scriptscriptstyle{ges}}} } = \frac{ 1 }{ R_{\scriptscriptstyle{1}}} + \frac{ 1 }{ R_{\scriptscriptstyle{2}} }\) |
3.3.3 (3) | \(\Delta E = c \cdot m \cdot \Delta T\) |
3.3.5.1 (1) | \(v = \frac{ \Delta s }{ \Delta t }\) |
3.3.5.1 (1) | \(a = \frac{ \Delta v }{ \Delta t }\) |
3.3.5.1 (2) | \(s(t) = v \cdot t\) |
3.3.5.1 (2) | \(v = \mathrm{konstant}\) |
3.3.5.1 (2) | \(s(t) = \frac{1}{2} \cdot a \cdot t^2\) |
3.3.5.1 (2) | \(v(t) = a \cdot t\) |
3.3.5.1 (2) | \(a = \mathrm{konstant}\) |
3.3.5.1 (6) | \(v = \frac{ 2 \cdot \pi \cdot r }{ T }\) |
3.3.5.2 (2) | \(F = m \cdot a\) |
3.3.5.2 (2) | \(F = \frac{ \Delta p }{ \Delta t }\) |
3.3.5.2 (2) | \(p = m \cdot v\) |
3.3.5.2 (5) | \(F_{\mathrm{\scriptscriptstyle{Z}}} = \frac{ m \cdot v^2 }{ r }\) |
3.3.5.3 (2) | \(\Delta E = F_{\mathrm{\scriptscriptstyle{s}}} \cdot \Delta s\) |
3.3.5.3 (2) | \(F_{\mathrm{\scriptscriptstyle{s}}} = \mathrm{konstant}\) |
3.3.5.3 (3) | \(E_{\mathrm{\scriptscriptstyle{kin}}} = \frac{1}{2} \cdot m \cdot v^{2}\) |
3.3.5.3 (3) | \(E_{\mathrm{\scriptscriptstyle{Lage}}} = m \cdot g \cdot h\) |
3.3.5.3 (3) | \(E_{\mathrm{\scriptscriptstyle{Spann}}} = \frac{1}{2} \cdot D \cdot s^2\) |
3.3.5.3 (5) | \(\vec{p} = m \cdot \vec{v}\) |
3.4.2.1 (2) | \(\vec{E} = \frac{ \vec{F}_{\mathrm{el}} }{ q }\) |
3.4.2.1 (4) | \(\vec{B}\) |
3.4.2.1 (4) | \(F = B \cdot I \cdot s\) |
3.4.2.1 (5) | \(F_{\mathrm{\scriptscriptstyle{L}}} = q \cdot v \cdot B\) |
3.4.2.1 (7) | \(C = \frac{Q}{U}\) |
3.4.2.1 (7) | \(E = \frac{U}{d}\) |
3.4.2.1 (7) | \(C = \varepsilon_{\scriptscriptstyle{0}} \cdot \varepsilon_{\scriptscriptstyle{\mathrm{r}}} \cdot \frac{A}{d}\) |
3.4.2.1 (7) | \(E_{\mathrm{\scriptscriptstyle{Kond}}} = \frac{1}{2} \cdot C \cdot U^{2}\) |
3.4.2.1 (9) | \(B = \mu_{\scriptscriptstyle{0}} \cdot \mu_{\scriptscriptstyle{\mathrm{r}}} \cdot \frac{n}{l} \cdot I\) |
3.4.2.1 (9) | \(E_{\mathrm{\scriptscriptstyle{Spule}}} = \frac{1}{2} \cdot L \cdot I^{2}\) |
3.4.2.2 (2) | \(\Phi = A \cdot B\) |
3.4.2.2 (2) | \(B\) |
3.4.2.2 (2) | \(A\) |
3.4.2.2 (2) | \(U_{\mathrm{\scriptscriptstyle{ind}}} = - n \cdot \dot{\Phi}\) |
3.4.2.2 (3) | \(U_{\mathrm{\scriptscriptstyle{ind}}} = - L \cdot \dot{I}\) |
3.4.3 (1) | \(s(t)\) |
3.4.3 (1) | \(\hat{s}\) |
3.4.3 (1) | \(T\) |
3.4.3 (1) | \(f\) |
3.4.3 (1) | \(\omega\) |
3.4.3 (2) | \(s(t) = \hat{s} \cdot \sin(\omega \cdot t)\) |
3.4.3 (2) | \(s(t) = \hat{s} \cdot \cos(\omega \cdot t)\) |
3.4.3 (2) | \(v(t) = \dot{s}(t)\) |
3.4.3 (2) | \(a(t) = \dot{v}(t) = \ddot{s}(t)\) |
3.4.3 (4) | \(T = 2 \pi \cdot \sqrt{ \frac{m}{D} }\) |
3.4.4 (1) | \(\lambda\) |
3.4.4 (1) | \(c = \lambda \cdot f\) |
3.4.6 (5) | \(E_{\mathrm{\scriptscriptstyle{kin,max}}} = h \cdot f - E_{\mathrm{\scriptscriptstyle{A}}}\) |
3.4.6 (5) | \(h\) |
3.4.6 (6) | \(E_{\mathrm{\scriptscriptstyle{Quant}}} = h \cdot f\) |
3.4.6 (6) | \(p = \frac{h}{\lambda}\) |
3.4.6 (9) | \(f = \frac{\Delta E}{h}\) |
3.5.2.1 (2) | \(\vec{E} = \frac{ \vec{F}_{\mathrm{el}} }{ q }\) |
3.5.2.1 (4) | \(\vec{B}\) |
3.5.2.1 (4) | \(F = B \cdot I \cdot s\) |
3.5.2.1 (5) | \(F_{\mathrm{\scriptscriptstyle{L}}} = q \cdot v \cdot B\) |
3.5.2.1 (7) | \(C = \frac{Q}{U}\) |
3.5.2.1 (7) | \(E = \frac{U}{d}\) |
3.5.2.1 (7) | \(C = \varepsilon_{\mathrm{\scriptscriptstyle{0}}} \cdot \varepsilon_{\mathrm{\scriptscriptstyle{r}}} \cdot \frac{A}{d}\) |
3.5.2.1 (7) | \(E_{\mathrm{\scriptscriptstyle{Kond}}} = \frac{1}{2} \cdot C \cdot U^2\) |
3.5.2.1 (9) | \(B = \mu_{\scriptscriptstyle{0}} \cdot \mu_{\scriptscriptstyle{\mathrm{r}}} \cdot \frac{n}{l} \cdot I\) |
3.5.2.2 (2) | \(\Phi = A \cdot B\) |
3.5.2.2 (2) | \(B\) |
3.5.2.2 (2) | \(A\) |
3.5.2.2 (2) | \(U_{\mathrm{\scriptscriptstyle{ind}}} = - n \cdot \dot{\Phi}\) |
3.5.3 (1) | \(s(t)\) |
3.5.3 (1) | \(\hat{s}\) |
3.5.3 (1) | \(T\) |
3.5.3 (1) | \(f\) |
3.5.3 (1) | \(\omega\) |
3.5.3 (2) | \(s(t) = \hat{s} \cdot \sin( \omega \cdot t )\) |
3.5.3 (2) | \(s(t) = \hat{s} \cdot \cos( \omega \cdot t )\) |
3.5.3 (2) | \(v(t) = \dot{s}(t)\) |
3.5.3 (2) | \(a(t) = \dot{v}(t) = \ddot{s}(t)\) |
3.5.3 (4) | \(T = 2 \pi \cdot \sqrt{ \frac{m}{D} }\) |
3.5.4 (1) | \(\lambda\) |
3.5.4 (1) | \(c = \lambda \cdot f\) |
3.5.6 (1) | \(E_{\mathrm{\scriptscriptstyle{kin,max}}} = h \cdot f - E_{\mathrm{\scriptscriptstyle{A}}}\) |
3.5.6 (1) | \(h\) |
3.5.6 (2) | \(E_{\mathrm{\scriptscriptstyle{Quant}}} = h \cdot f\) |
3.5.6 (2) | \(p = \frac{h}{\lambda}\) |
3.5.6 (4) | \(f = \frac{ \Delta E }{ h }\) |
3.5.7 (3) | \(v = H_0 \cdot r\) |
3.5.7 (7) | \(R_{\mathrm{\scriptscriptstyle{S}}} = \frac{2 \cdot G \cdot M}{c^2}\) |
3.6.2.1 (1) | \(F = \frac{ 1 }{ 4 \, \pi \, \varepsilon_0 } \cdot \frac{ Q_1 \cdot Q_2 }{ r^2 }\) |
3.6.2.1 (4) | \(\vec{E} = \frac{ \vec{F}_{\mathrm{\scriptscriptstyle{el}}} }{ q }\) |
3.6.2.1 (5) | \(E = \frac{ U }{ d }\) |
3.6.2.1 (6) | \(C = \frac{ Q }{ U }\) |
3.6.2.1 (7) | \(C = \varepsilon_{\mathrm{\scriptscriptstyle{0}}} \cdot \varepsilon_{\mathrm{\scriptscriptstyle{r}}} \cdot \frac{A}{d}\) |
3.6.2.1 (7) | \(E_{\mathrm{\scriptscriptstyle{Kond}}} = \frac{1}{2} \cdot C \cdot U^{2}\) |
3.6.2.2 (2) | \(\vec{B}\) |
3.6.2.2 (2) | \(F = B \cdot I \cdot s\) |
3.6.2.2 (3) | \(F_{\mathrm{\scriptscriptstyle{L}}} = q \cdot v \cdot B\) |
3.6.2.2 (5) | \(B = \mu_{\mathrm{\scriptscriptstyle{0}}} \cdot \mu_{\mathrm{\scriptscriptstyle{r}}} \cdot \frac{n}{l} \cdot I\) |
3.6.2.3 (2) | \(\Phi = A \cdot B\) |
3.6.2.3 (2) | \(B\) |
3.6.2.3 (2) | \(A\) |
3.6.2.3 (2) | \(U_{\mathrm{\scriptscriptstyle{ind}}} = - n \cdot \dot{\Phi}\) |
3.6.2.3 (4) | \(U_{\mathrm{\scriptscriptstyle{ind}}} = - L \cdot \dot{I}\) |
3.6.2.3 (5) | \(L = \mu_{\mathrm{\scriptscriptstyle{0}}} \cdot \mu_{\mathrm{\scriptscriptstyle{r}}} \cdot n^{2} \cdot \frac{A}{l}\) |
3.6.2.3 (5) | \(E_{\mathrm{\scriptscriptstyle{Spule}}} = \frac{1}{2} \cdot L \cdot I^{2}\) |
3.6.3 (1) | \(s(t)\) |
3.6.3 (1) | \(\hat{s}\) |
3.6.3 (1) | \(T\) |
3.6.3 (1) | \(f\) |
3.6.3 (1) | \(\omega\) |
3.6.3 (2) | \(s(t) = \hat{s} \cdot \sin( \omega \cdot t )\) |
3.6.3 (2) | \(s(t) = \hat{s} \cdot \cos( \omega \cdot t )\) |
3.6.3 (2) | \(v(t) = \dot{s}(t)\) |
3.6.3 (2) | \(a(t) = \dot{v}(t) = \ddot{s}(t)\) |
3.6.3 (5) | \(\ddot{s}(t) = - \frac{D}{m} \cdot s(t)\) |
3.6.3 (5) | \(T = 2 \pi \cdot \sqrt{ \frac{m}{D} }\) |
3.6.3 (6) | \(\ddot{s}(t) = - \frac{g}{l} \cdot s(t)\) |
3.6.3 (6) | \(T = 2 \pi \cdot \sqrt{ \frac{l}{g} }\) |
3.6.3 (8) | \(\ddot{Q}(t) = - \frac{1}{ L \cdot C } \cdot Q(t)\) |
3.6.3 (8) | \(T = 2 \pi \cdot \sqrt{ L \cdot C }\) |
3.6.4 (1) | \(\lambda\) |
3.6.4 (1) | \(c = \lambda \cdot f\) |
3.6.4 (4) | \(s(x,t) = \hat{s} \cdot \sin \left[ 2 \pi \left( \frac{t}{T} - \frac{x}{\lambda} \right) \right]\) |
3.6.6 (1) | \(E_{\mathrm{\scriptscriptstyle{kin,max}}} = h \cdot f - E_{\mathrm{\scriptscriptstyle{A}}}\) |
3.6.6 (1) | \(h\) |
3.6.6 (2) | \(E_{\mathrm{\scriptscriptstyle{Quant}}} = h \cdot f\) |
3.6.6 (2) | \(p = \frac{h}{\lambda}\) |
3.6.6 (5) | \(\left| \psi \right|^2\) |
3.6.6 (7) | \(\Delta x \cdot \Delta p_{\scriptscriptstyle{x}} \geq h\) |
3.6.6 (10) | \(f = \frac{\Delta E}{h}\) |
3.6.6 (10) | \(E_{\mathrm{\scriptscriptstyle{n}}} = - R_{\scriptscriptstyle{\infty}} \cdot c \cdot h \cdot \frac{1}{n^2}\) |